新聞| | PChome| 登入
2017-02-10 01:11:03| 人氣21| 回應0 | 上一篇 | 下一篇
推薦 0 收藏 0 轉貼0 訂閱站台

Quadratic Equations

標題:

Quadratic Equations

發問:

1. If the graph of y = 9(x-1)^2 - m - 6 intersects the x-axis, find the smallest value of m. ***2. The expression 2x^2 - mx + 1 has a minimum value -7 for all values of x. Find the value of m.

最佳解答:

1. If the graph of y = 9(x-1)^2 - m - 6 intersects the x-axis, find the smallest value of m. y = 9(x - 1)^2 - m - 6 y = 9(x^2 - 2x + 1) - m - 6 y = 9x^2 - 18x + 9 - m - 6 y = 9x^2 - 18x + 3 - m Intersecting the x-axis there is real roots for y = 9x^2 - 18x + 3 - m = 0 Discriminant >= 0 18^2 - (4)(9)(3 - m) >= 0 324 - 36(3 - m) >= 0 9 >= 3 - m m >= -6 The smallest value of m is -6 2. The expression 2x^2 - mx + 1 has a minimum value -7 for all values of x. Find the value of m. 2x^2 - mx + 1 = 2(x^2 - mx/2 + 1/2) = 2[x^2 - mx/2 + (m/4)^2 +1/2 - (m/4)^2] = 2(x - m/4)^2 + 1 - m^2/8 The minimum value happens when the braketed terms is zero, and the minimum value is 1 - m^2/8 = -7 8 = m^2/8 m^2 = 64 m = +/-8

此文章來自奇摩知識+如有不便請留言告知

< async src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"> 其他解答:4E350C6F8B48ECA2

台長: nzphddr
人氣(21) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 流行時尚(美容彩妝、保養、造型、塑身、流行情報)

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文