24h購物| | PChome| 登入
2023-12-14 20:08:42| 人氣1| 回應0 | 上一篇 | 下一篇

這些超導體反應“奇特”,科學家終於知曉原因

推薦 0 收藏 0 轉貼0 訂閱站台

 1. 於超導領域的突破性研究透露了,以高臨界溫度銅為基礎的超導體新洞察力。諸多共同研究的努力揭露了,此些超導體的奇怪金屬反應,且確認了一處量子臨界點。廣泛的X-射線實驗導致了,該擁有關於未來技術及可持續解決方案之指望的發現。

Groundbreaking research in superconductivity reveals new insights into high-critical-temperature copper-based superconductors. Collaborative efforts uncovered the strange metal behavior of these superconductors and identified a quantum critical point. Extensive X-ray experiments led to this discovery, which holds promise for future technologies and sustainable solutions.

 

Recent research has unlocked key aspects of high-critical-temperature superconductors, identifying their unique ‘strange metal’ state and a crucial quantum critical point. This discovery, resulting from collaborative efforts and extensive experiments, paves the way for advanced superconducting technologies.

最近的研究已經解開,高臨界溫度超導體的關鍵層面。確認了,其獨特的奇特金屬狀態,及一處關鍵性的量子臨界點。該項起因於諸多共同研究之努力及廣泛實驗的發現,為先進的超導技術鋪了路。

 

Taking a significant step forward in superconductivity research, the discovery could pave the way for sustainable technologies and contribute to a more environmentally friendly future.

在超導性研究方面,獲得向前邁進的重要一步。此發現可能為可持續之技術鋪路,且有助於一種環境上更友善的未來。

 

The study just published in Nature Communications by researchers from Politecnico di Milano, Chalmers University of Technology in Göteborg, and Sapienza University of Rome sheds light on one of the many mysteries of high-critical-temperature copper-based superconductors:

該項由,來自米蘭理工大學、瑞典哥德堡查爾姆斯理工大學及羅馬第一大學研究人員們,剛(20231213)發表於《自然•通信》期刊的研究闡明了,以高臨界溫度銅為基礎之超導體的諸多謎團之一:

 

even at temperatures above the critical temperature, they are special, behaving like “strange” metals. This means that their electrical resistance changes with temperature differently than that of normal metals.

即使在高於臨界溫度的溫度,它們也是特殊的,反應像奇特的金屬。這意味著,它們的電阻隨溫度的變化,不同於正常金屬。

 

The research hints at the existence of a quantum critical point connected to the phase called “strange metal.”

該研究暗示了,一種與被稱為奇特金屬相之量子臨界點的存在。

 

 

2. 銅酸鹽的相圖。

     Phase diagram of cuprates.

 

“A quantum critical point identifies specific conditions where a material undergoes a sudden change in its properties due solely to quantum effects. Just like ice melts and becomes liquid at zero degrees Celsius due to microscopic temperature effects, cuprates turn into a ‘strange’ metal because of quantum charge fluctuations” commented Riccardo Arpaia, researcher at the Department of Microtechnology and Nanoscience at Chalmers and leading author of the study.

該項研究首要撰文人,瑞典查爾姆斯理工大學,微技術暨奈米科學系研究員,Riccardo Arpaia評論:「量子臨界點確定了,材料僅由於量子效應,經歷其屬性突然變化的特定條件。就像冰在攝氏零度,由於微觀溫度效應,融化變成液體一樣。因為量子電荷波動,銅酸鹽變成了一種奇特的金屬。」

 

The research is based on X-ray scattering experiments conducted at the European Synchrotron ESRF and at the British synchrotron DLS. They reveal the existence of charge density fluctuations affecting the electrical resistance of cuprates in such a way as to make them “strange.” The systematic measurement of how the energy of these fluctuations varies allowed identifying the value of the charge carrier density at which this energy is minimum: the quantum critical point.

該項研究是根據,以歐洲同步加速器的歐洲同步輻射設備(ESRFEuropean Synchrotron Radiation Facility)及英國同步加速器之動態光散射(DLSDynamic Light Scattering)進行的X-射線散射實驗。他們揭露了,影響銅酸鹽電阻,從而使它們變得奇特之電荷密度波動的存在。有關此些波動之能量如何變化的系統測量,使之得以確認,在此些波動中,該能量是最小時的載流子密度值:也就是,量子臨界點。

 

3. 位於法國格勒諾布爾市,歐洲同步加速器之歐洲同步輻射設備的共振非彈性X -射線散射(ERIXSResonant Inelastic X-Ray Scattering)儀器。

The ERIXS instrument of the European Synchrotron ESRF in Grenoble.

 

“This is the result of more than five years of work. We used a technique, called RIXS, largely developed by us at the Politecnico di Milano. Thanks to numerous measurement campaigns and to new data analysis methods, we were able to prove the existence of the quantum critical point. A better understanding of cuprates will guide the design of even better materials, with higher critical temperatures, and therefore easier to exploit in tomorrow’s technologies,” adds Giacomo Ghiringhelli, Professor at the Physics Department of the Politecnico di Milano and coordinator of the research.

該項研究統籌人,意大利米蘭理工大學物理系教授,Giacomo Ghiringhelli附言:「這是五年多的研究成果。我們使用了一種,被稱為RIXS 的技術,該技術主要是由,我們在米蘭理工大學開發的。由於諸多測量活動及新的數據分析方法,我們能證實量子臨界點的存在。更深入瞭解銅酸鹽,能引領設計出,具有較高的臨界溫度,從而更容易利用於,未來技術中的更佳材料。」

 

Sergio Caprara, together with his colleagues at the Department of Physics of Sapienza University of Rome, came up with the theory that assigns to charge fluctuations a key role in cuprates. He declared “This discovery represents an important advancement in understanding not only the anomalous properties of the metallic state of cuprates, but also the still obscure mechanisms underlying high-temperature superconductivity.”

Sergio Caprara連同於羅馬第一大學物理系的同僚們提出了,認定電荷波動在銅酸鹽中,扮演關鍵角色的理論。他宣稱:「此發現代表了,不僅在瞭解銅酸鹽金屬態的異常屬性上,而且在瞭解高溫超導性之潛在機制,仍然模糊不清方面的一項重要進展。」

 

 

網址:https://scitechdaily.com/these-superconductors-are-acting-strange-and-scientists-finally-know-why/

翻譯:許東榮

台長: peregrine
人氣(1) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 教育學習(進修、留學、學術研究、教育概況)

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文