24h購物| | PChome| 登入
2023-04-28 08:52:47| 人氣43| 回應0 | 上一篇 | 下一篇

突破性量子點電晶體創造了傳統電子裝置的靈活替代品 (舊譯文)

推薦 0 收藏 0 轉貼0 訂閱站台

Quantum dot logic circuits provide the long-sought building blocks for innovative devices, including printable electronics, flexible displays, and medical diagnostics

量子點邏輯電路為,包括可印刷的電子裝置、可彎曲的顯示器及醫療診斷裝置等創新裝置,提供了長期尋求的構材。

 

1. 藉由沉積金(Au)及銦(In)觸點,研究人員們在同一基板上,創造了兩種關鍵類型的量子點電晶體,這為眾多的創新電子裝置開啟了途徑。  (圖援用自原文)

 

Researchers at Los Alamos National Laboratory and their collaborators from the University of California, Irvine have created fundamental electronic building blocks out of tiny structures known as quantum dots and used them to assemble functional logic circuits.

於美國洛斯阿拉莫斯國家實驗室的研究人員們,及其來自加州大學爾灣分校的共同研究人員們,已經從被通稱為量子點的微小結構物,創造了基本的電子構材,且使用它們來組裝適於特殊需要的邏輯電路。

 

The innovation promises a cheaper and manufacturing-friendly approach to complex electronic devices that can be fabricated in a chemistry laboratory via simple, solution-based techniques, and offer long-sought components for a host of innovative devices.

這項創新可望有種,能在化學實驗室,經由簡單、以溶液為基礎的技術,來製造複雜電子裝置之廉價且易於製造的方法,及為眾多創新裝置,提供長期尋找的組件。

 

“Potential applications of the new approach to electronic devices based on non-toxic quantum dots include printable circuits, flexible displays, lab-on-a-chip diagnostics, wearable devices, medical testing, smart implants, and biometrics,” said Victor Klimov, a physicist specializing in semiconductor nanocrystals at Los Alamos and lead author on a paper announcing the new results in the October 19 issue of Nature Communications.

一篇20201019日,發表於《自然•通訊》期刊的論文首要撰文人,於洛斯阿拉莫斯國家實驗室,專攻半導體奈米結晶體的物理學家,Victor Klimov宣稱:「該種有關電子裝置,以無毒量子點為基礎之新方法的潛在應用,包括可印刷的電路、可彎曲的顯示器、芯片上實驗室的診斷裝置、可穿戴裝置、醫學檢驗、智慧型植入物及生物統計學。」

 

For decades, microelectronics has relied on extra-high purity silicon processed in a specially created clean-room environment. Recently, silicon-based microelectronics has been challenged by several alternative technologies that allow for fabricating complex electronic circuits outside a clean room, via inexpensive, readily accessible chemical techniques.

幾十年來,微電子裝置一直仰賴,在特別創建的潔淨室環境中,加工的超高純度矽。最近,以矽為基礎的微電子裝置已經受到,經由廉價容易獲得的化學技術,而容許在潔淨室外,製造複雜電子電路之諸多可供選擇技術的挑戰。

 

Colloidal semiconductor nanoparticles made with chemistry methods in much less stringent environments are one such emerging technology. Due to their small size and unique properties directly controlled by quantum mechanics, these particles are dubbed quantum dots. 

在不太嚴格的環境中,使用化學方法製造的膠質半導體奈米粒子,是此類新興技術的一種產物。由於它們的小尺寸及直接由量子力學控制的獨特屬性,這些粒子被稱為量子點。

 

A colloidal quantum dot consists of a semiconductor core covered with organic molecules. As a result of this hybrid nature, they combine the advantages of well-understood traditional semiconductors with the chemical versatility of molecular systems.

膠質量子點是由覆蓋了,有機分子的一種半導體蕊組成。由於這種混合性質,它們結合了,充分被瞭解、具有分子物系之化學多用途的諸多傳統半導體優點。

 

These properties are attractive for realizing new types of flexible electronic circuits that could be printed onto virtually any surface including plastic, paper, and even human skin. This capability could benefit numerous areas including consumer electronics, security, digital signage and medical diagnostics.

就實現能被印刷於,包括塑膠、紙張及甚至人類皮膚等,幾乎任何表面上之新型可彎曲的電子電路而言,上述屬性是引人注目的。此能耐能有益於,包括消費性電子裝置、使免遭危險之物、數位標誌及醫療診斷裝置等,諸多領域。

 

A key element of electronic circuitry is a transistor that acts as a switch of electrical current activated by applied voltage. Usually transistors come in pairs of n- and p-type devices that control flows of negative and positive electrical charges, respectively.

電子電路的一項關鍵元件是充當一種,由施加電壓激活之電流開關的電晶體。通常電晶體是,分別控制正、負電荷流動的成對n型及p型裝置。

 

Such pairs of complementary transistors are the cornerstone of the modern CMOS (complementary metal oxide semiconductor) technology, which enables microprocessors, memory chips, image sensors and other electronic devices.

此類成對的互補電晶體,是使微處理器、記憶晶片、影像感知器及其他電子裝置,成為可能之現代CMOS(互補金屬氧化物半導體)技術的基石。

 

The first quantum dot transistors were demonstrated almost two decades ago. However, integrating complementary n- and p-type devices within the same quantum dot layer remained a long-standing challenge. In addition, most of the efforts in this area have focused on nanocrystals based on lead and cadmium. These elements are highly toxic heavy metals, which greatly limits practical utility of the demonstrated devices.

最早的量子點電晶體,近乎20年前被論證。不過,在同一量子點層中,使成一體的互補np型裝置,仍然是一項長期存在的挑戰。此外,於該領域的大多數嘗試一直著重於,以鉛及鎘為基礎的奈米晶體上。此些元素是高度有毒的重金屬,這大大限制了,該種經論證之裝置的實際功用。

 

The team of Los Alamos researchers and their collaborators from the University of California, Irvine have demonstrated that by using copper indium selenide (CuInSe2) quantum dots devoid of heavy metals they were able to address both the problem of toxicity and simultaneously achieve straightforward integration of n- and p-transistors in the same quantum dot layer.

該洛斯阿拉莫斯國家實驗室研究人員,及來自加州大學爾灣分校的共同研究人員團隊已經證實,藉由使用不含重金屬的硒化銅銦(CuInSe2)量子點。他們能夠解決毒性問題,及在同一量子點層中,同時達成np型電晶體的直接整合。

 

As a proof of practical utility of the developed approach, they created functional circuits that performed logical operations.

為了證明所開發之方法的實際功用,他們創造了執行邏輯運算之適於特殊需要的電路。

 

The innovation that Klimov and colleagues are presenting in their new paper allows them to define p- and n-type transistors by applying two different types of metal contacts (gold and indium, respectively). They completed the devices by depositing a common quantum dot layer on top of the pre-patterned contacts.

該種在新論文中,由Klimov及其同僚們提出的創新技術,使他們得以藉由,利用兩種不同類型的金屬觸點(分別為金及銦),來界定pn型電晶體。藉由在預作圖案的觸點上,沉積一層普通量子點層,他們完成了此些裝置。

 

“This approach permits straightforward integration of an arbitrary number of complementary p- and n-type transistors into the same quantum dot layer prepared as a continuous, un-patterned film via standard spin-coating,” said Klimov.

Klimov宣稱:「此方法容許,經由標準旋轉塗布,將任意數量的互補pn型電晶體,直接集成到,預備作為一種連續、未經製作圖案之薄膜的相同量子點層中。」

 

 

原文網址:https://www.lanl.gov/discover/news-release-archive/2020/October/1029-quantum-dot-transistors.php?source=newsroom-2020-tiles

翻譯:許東榮

台長: peregrine
人氣(43) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 教育學習(進修、留學、學術研究、教育概況)

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文