24h購物| | PChome| 登入
2023-07-28 08:49:08| 人氣17| 回應0 | 上一篇 | 下一篇

希格斯玻色子與超導性 (舊譯文)

推薦 0 收藏 0 轉貼0 訂閱站台

A new form of spectroscopy provides insights for the development of resistance-free current transport at ambient temperature

一種新形式的光譜技術提供了,在環境溫度(通常是室溫或正在考慮之計算機或電源設備等,周遭空氣溫度)下,顯現無阻抗電流傳輸的洞察力。

 

Without the Higgs mechanism, particles would have no mass. The Higgs boson, which was discovered in 2012, is therefore also referred to as the “God particle”. It arises as an oscillating excitation of the Higgs field, which penetrates the world. Superconductivity displays similar properties.

沒有希格斯機制(在粒子物理學的標準模型中,這是解釋標準玻色子之屬性 "質量 "生成機制,所不可或缺的),粒子會沒有質量。因此,在2012年被發現的希格斯玻色子,也被稱為“上帝粒子”。是當貫穿宇宙的希格斯場(被認為存在於宇宙所有區域的一個能量場),振盪激發時產生的。超導性展現相似的諸多屬性。

 

Their quantum mechanical wave, on which the electrons connected to form Cooper pairs essentially “surf”, can be excited to Higgs oscillations with a strong laser. These oscillations then emit a signal that provides complete information about this collective quantum state.

使用強烈雷射能激發希格斯玻色子的量子力學波(本質上是碎波電子在其上連接形庫柏對),產生希格斯振盪。之後,這些振盪發出一種,提供有關該集體量子態之完整信息的信號。

 

This may help to unlock the mystery of high-temperature superconductivity. Higgs spectroscopy was developed by the international Max Planck-UBC-UTokyo Centre for Quantum Materials in which the Max Planck Institute for Solid State Research in Stuttgart is involved.

這可能有助於解開高溫超導性之謎。希格斯光譜技術是由,包括德國馬克斯普朗克固體研究所(位於斯圖加特市)之馬克斯普朗克-加拿大英屬哥倫比亞大學(UBCUniversity of British Columbia) -日本東京大學(UTokyo University of Tokyo)的國際量子材料中心所開發。

 

1. 這是希格斯振蕩於超導體中,如何被激發的方式。在中間,能看到啞鈴形庫柏對(灰色)。一方面,來自左上角的兆赫茲雷射脈衝導致其旋轉,即繞著具有角動量L的黃色軸線旋轉。之後,如圖中鋸齒形彈簧所示,開始在自身內部振盪。這些是實際的希格斯振盪。這種疊加導致了振盪的獨特對稱性,特別是在高溫超導體中。它們以三倍上述雷射的頻率,發出具有攸關超導性量子力學狀態之完整信息的信號。

 

If superconductivity at ambient temperature were possible in technical applications, this could lead to enormous energy savings. When high-temperature superconductivity was discovered in the 1980s, it appeared that this would be feasible.

在諸多技術應用上,倘若在環境溫度下超導性是可能的,則這可能導致節省大量能源。在1980年代,當高溫超導性被發現時,顯然這會是可行的。

 

But after the temperature records were initially broken, there were no further developments with respect to the temperature at which superconductivity occurs. The materials that become superconducting at high temperatures – especially the cuprates discovered back then – proved to be a hard nut to crack for theoretical physics.

不過,在溫度記錄最初被打破之後,有關發生超導性的溫度,沒有進一步的發展。在高溫下,變成超導的材料(特別是在當時發現的銅酸鹽)經證實,是理論物理難以使之破裂的堅果。

 

In contrast to conventional low-temperature superconductors, physicists have not been able to explain the extremely complex mechanism of high-temperature superconductivity. They do not yet understand why it is relatively temperature resistant and how it can be made even more tolerant to heat in order to make the materials suitable for everyday use.

與傳統低溫超導體截然不同,物理學家們一直無法解釋,高溫超導性的極端複雜機理。他們還不了解,為何其相對上是耐溫度的,及為了使此些材料適合日常使用,應如何使其能更耐熱。

 

A completely new experimental method, which the international cooperation Max Planck-UBC-UTokyo Centre for Quantum Materials has successfully used on high-temperature superconductors for the first time, could help here.

一種由國際合作之德國馬克斯普朗克-加拿大英屬哥倫比亞大學-日本東京大學的量子材料中心,已經首度成功使用於高溫超導體的全新實驗方法,在此可以協助。

 

This cooperation with the University of British Columbia (UBC) and the University of Tokyo was co-founded 10 years ago by Bernhard Keimer’s Department at the Max Planck Institute for Solid State Research in Stuttgart. At that time, it was clear that research into high-temperature superconductivity was a scientific marathon. The cooperation has endeavoured to solve this mystery.

該項與加拿大英屬哥倫比亞大學及日本東京大學的合作,是10年前由馬克斯普朗克固體研究所,Bernhard Keimer的部門共同創立。在當時,很顯然探索高溫超導性,是一種科學馬拉松。該項合作一直致力於解開上述謎團。

 

Superconductivity is a field of research in solid state physics. Solid state physicists are struggling with the fundamental problem that the properties of the materials can be investigated only with indirect methods. This methodical problem has now been overcome using Higgs spectroscopy. “It can make the superconducting ground state – the desired quantum object – completely transparent”, says Stefan Kaiser.

超導性是固態物理學中,一項研究領域。固態物理學家們正努力於,只能以間接方法,來調查研究材料諸屬性的基本問題。使用希格斯光譜技術,目前已經克服這種方法上的問題。Stefan Kaiser宣稱:「它能使超導基態(渴望的量子物)完全透明。」

 

The physics professor heads the joint research group Ultrafast Solid State Spectroscopy of the Max Planck Institute for Solid State Research and the University of Stuttgart.

這位物理學教授,是馬克斯普朗克固體研究所及斯圖加特大學,超快固態光譜技術聯合研究團隊的領導人。

 

The experiment, in which the method proved itself on high-temperature superconductors, took place at the Helmholtz Zentrum Dresden-Rossendorf, which is equipped with a powerful laser that emits radiation in the required terahertz range. This is the same sub-infrared electromagnetic radiation we see in body scanners at airports.

在上述方法本身,針對高溫超導體經證實的實驗,是在配備了一種,發射所需兆赫茲範圍內輻射之強烈雷射的德國亥姆霍茲-德累斯頓-羅森多夫中心進行。這是在機場人體掃描儀中,咱們看到的相同亞紅外線電磁輻射。

 

The theory leading to the development of the new Higgs spectroscopy was developed over 10 years by the team of Dirk Manske. It is particularly surprising that particle physics has provided essential ideas. “Looking into particle physics is the current trend in theoretical solid state physics”, says the physics professor, who is also a researcher at the Institute in Stuttgart. It worked well in this case.

引領開發出希格斯光譜技術的理論,是10多年前,由Dirk Manske團隊所揭示的。特別令人訝異的是,粒子物理學已經提供基本概念。這名也是該於斯圖加特市研究所研究員的物理學教授宣稱:「在理論固態物理學方面,窺探粒子物理學是當前趨勢。」在此事例中,這運作良好。

 

As early as the early 1960s, solid-state physics was complementing theoretical particle physics in the form of the recently deceased Nobel Prize winner in physics, Philip Anderson. Anderson was an outstandingly creative pioneer of solid state physics. He was also interested in particle physics.

早在1960年代初期,固態物理學以最近去世之諾貝爾物理學獎得主,Philip Anderson(局部化、反鐵磁性及對稱性破裂理論)的形式,補充了理論粒子物理學。Anderson是固態物理學的傑出創新先驅。他也對粒子物理學感興趣。

 

In 1962, he published a paper demonstrating how photons (or light quanta) obtain mass. This inspired Peter Higgs to publish his theory of the Higgs field in 1964 and led to him and François Englert being awarded the Nobel Prize for Physics in 2013.

1962年,他發表了一篇,論證光子(或光量子)如何獲得質量的論文。這激發了Peter Higgs,在1964年發表了,其有關希格斯場的理論。這導致他及François Englert2013年獲頒諾貝爾物理學獎。

 

“In solid-state physics, we speak of the Anderson-Higgs mechanism”, says Kaiser. Higgs spectroscopy has now brought these ideas back into solid state physics. Like the Higgs boson, the Cooper pairs, which are each formed from two electrons and carry superconductivity, belong to the quantum mechanical family of bosons. Bosons tend to assemble in a common quantum state.

Kaiser宣稱:「在固態物理學中,我們談論安德森-希格斯機制。」目前,希格斯光譜技術已經將上述概念,帶回到固態物理學中。像希格斯玻色子,每一對從兩個電子形成的庫柏對,屬於玻色子的量子力學家族。玻色子傾向以共同的量子態聚集。

 

The Cooper pairs form a large quantum mechanical wave, a collective quantum object that can move through the superconductor as an electric current without friction.

庫柏對形成一種大的量子力學波,這是一種能無摩擦力穿過超導體,來作為一種電流的集體量子物。

 

The Cooper pairs can be thought of as dumbbells. The electrons correspond to the weights, and the connection between them is the handle. “But it functions more like a spring”, stresses Manske. The electrons in the Cooper pair can thus oscillate against or with each other. “These are the Higgs oscillations”, explains the theorist. “For a long time, it was not clear whether they were even excitable in Cooper pairs”.

庫柏對可被視為啞鈴。電子相當於重量,它們之間的連結是柄。Manske強調:「不過,其作用更像一條彈簧。」因此,庫柏對中的電子,能反向或彼此相互振盪。該名理論學家解釋:「這些是希格斯振盪。長期以來,並不清楚是否,它們甚至在庫柏對中可被激發。」

 

But that’s exactly what Higgs spectroscopy does. Using a powerful terahertz laser beam at the appropriate frequency, it forces the Cooper pair dumbbells to vibrate and makes them rotate. The collective of the Cooper pairs behaves like a stringed instrument that also produces overtones with its resonating body.

不過,那正是希格斯光譜技術所達成的。使用一種適當頻率的強烈兆赫茲雷射束,其迫使庫柏對啞鈴振盪並使其旋轉。集體的庫柏對表現如同,一種也產生與其共振體之泛音的弦樂器。

 

“The superconducting pairs then oscillate at twice the frequency of the laser light and exhibit characteristic symmetries”, explains Kaiser. “In doing so, they send out a signal at three-fold the frequency”.

Kaiser解釋:「之後,此些超導對以兩倍上述雷射光的頻率振盪,且展現出獨特的對稱性。在這樣展現時,它們發出一種,以三倍上述頻率的信號。」

 

The clincher: this signal now contains complete information about the quantum object of the superconducting ground state. The novel aspect of Higgs spectroscopy is that it suddenly makes superconductivity transparent to the outside world. This also increases the researchers’ hopes of finally gaining a better understanding of the extremely temperature-resistant pairing mechanism of high-temperature superconductivity.

關鍵在於:目前,此信號具有攸關超導基態之量子物的完整信息。希格斯光譜技術的新層面是,其突然使超導性對外界透明。這也增加了,研究人員們最終獲得更深入瞭解,有關高溫超導性極度耐溫度之成對機制的希望。

 

The initial results on different cuprate superconductors show that even above the temperature at which superconductivity occurs, some electrons join together to form a kind of pre-formed Cooper pair. A more detailed understanding of this loose engagement of electrons even before the real Cooper pair union could perhaps open a path to superconductivity at ambient temperature. With Higgs spectroscopy, there has indeed been a “quantum leap” in superconductivity research.

此些針對不同銅酸鹽超導體的初步研究結果證實,即使在超出發生超導性的溫度,一些電子也結合在一起,形成一種預先形成的庫柏對。即使在真正的庫柏對結合之前,對電子這種鬆散結合的更詳細理解,或許可能開闢出一條,通往在環境溫度下之超導性的途徑。使用希格斯光譜技術,在超導性研究上,確實已經有了“量子躍進”。

 

 

原文網址:https://www.mpg.de/14836113/supraconductivity-higgs-spectrocsopy?c=2249

翻譯:許東榮

台長: peregrine
人氣(17) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 教育學習(進修、留學、學術研究、教育概況)

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文