24h購物| | PChome| 登入
2023-05-25 20:38:02| 人氣46| 回應0 | 上一篇 | 下一篇

改變形狀的結構物:建築物能如生物體般演化?

推薦 0 收藏 0 轉貼0 訂閱站台

圖片位址:https://scitechdaily.com/images/Bio-Informed-Responsive-Architecture.jpg?ezimgfmt=ngcb2/notWebP

This rendering is an example of the type of bio-informed responsive architecture that a team of Cornell researchers and their colleagues hope to create using design parameters based on morphogenesis. The rendering is of the Agrivoltaic Pavilion, part of the project Sustainable Architecture & Aesthetics, which was funded by the Grainger Foundation.

此透視圖是美國康奈爾大學,一支研究人員及其同僚們團隊,希望使用以形態發生為基礎的設計參數,創建生物提供信息之響應式架構類型的例子。此透視圖是屬於農業光伏館(Agrivoltaic Pavilion),這是由美國格蘭傑基金會(Grainger Foundation)資助之可持續建築學與美學計劃的一部分。

 

Biomedical engineers and architects are collaborating on a project to create a living building façade that adapts to its environment. By studying plants, fetal chick hearts, and adult brain cancers, they aim to develop sustainable building designs and improve climate-adaptable plants, heart defect prevention, and brain cancer treatment.

生物醫學工程師及建築師們正針對一項,創造一種適應其環境之活建築物的外層,進行合作。藉由研究植物、胎兒雛雞心及成年腦癌,他們力圖開發,可持續的建築物設計及改善可適應氣候的植物、預防心臟缺陷與治療腦癌。

 

Biomedical engineer Jonathan Butcher never thought he could learn how to fix cardiac malformations by analyzing brain cancer or plants.

生物醫學工程師,Jonathan Butcher未曾想過,藉由分析腦癌或植物,他能得悉如何修復心臟畸形。

 

But that’s exactly what he and a team of Cornell researchers and their colleagues aim to do, with a five-year, $3 million grant from the National Science Foundation. The project reimagines the convergence of architecture and biology to understand how organisms create internal structures – and to inform a new approach to architecture.

不過,那正是他與一支康奈爾大學研究人員團隊及其同僚們,在獲得來自美國國家科學基金會,一項為期五年、300萬美元之補助金下,所力圖進行的事。該項計劃重新構想了,建築學與生物學的融合,來瞭解生物體如何創造內部結構,及將新方法引領到建築上。

 

They plan to study how plants, fetal chick hearts, and adult brain cancers create forms like leaves and ventricles, and they’ll use the organisms’ process to create a living, breathing building façade that reacts to its environment in real-time, like an organism.

他們計劃研究,植物、胎兒雛雞心臟及成年腦癌,如何產生像葉子及心室等組織。然後,他們將利用生物體的該種過程,來創造一種如同生物體般,即時對其環境起反應之活生生、會呼吸的建築物外表

 

Their work could help create climate-adaptable plants, prevent heart defects, treat brain cancer, and design more sustainable buildings.

他們的研究可能有助於,創造可適應氣候的植物、預防心臟缺陷、治療腦癌,及設計更可持續的建築物。

 

“Our overarching goal is to see if there are common rules that apply across plants and animals, through which shape and size emerge from the interaction of the cells,” says Adrienne Roeder, the lead principal investigator (PI) of 13 researchers spanning plant biology, biomedical engineering, and architecture from Cornell, Tuskegee University and the University of Minnesota.

來自美國康奈爾大學、塔斯基吉大學及明尼蘇達大學,13名涵蓋植物生物學、生物醫學工程學及建築學之研究人員們的首要調查研究員(PI)Adrienne Roeder宣稱:「我們的首要目標是,瞭解是否有適用於植物及動物的共同法則。透過這些法則,從細胞的相互作用中,演化而成形狀及大小。」

 

“How does a plant cell know how to make a leaf? How does it know how big it should get? How does it know how to interact with its neighbors to make the leaf the right shape? It’s those kinds of questions that we’re really interested in,” Roeder says.

Roeder宣稱:「植物細胞如何知曉、成長為葉子?它如何知曉,應該長成多大?它如何知曉、與其鄰近的葉子互動,來使葉子長成正確的形狀?我們真正感興趣的,就是那些類型的問題。」

 

圖片位址:https://scitechdaily.com/images/Embryonic-Chick-Heart-Spatial-Transcriptomic-Map.jpg

This spatial transcriptomic map shows different cell phenotypes within a slice of an embryonic chick heart. The orange are cells that make up the valves inside the heart (mitral and tricuspid); the cells at left make up the wall of the left ventricle. Each dot represents a different cell with up to 10,000 genes that are measured.

這張空間的轉錄體地圖,顯示了胚胎小雞心臟切片內的不同細胞表現型。橙色是心臟內構成心臟瓣膜(二尖瓣及三尖瓣)的細胞;於左邊的細胞構成左心室的壁。每個點代表一個,具有高達1萬個可被計量之基因的不同細胞。

 

The project upends the traditional genetic approach that is more widespread in biology, says Butcher, professor at the Meinig School of Biomedical Engineering, part of Cornell Engineering. Rather, they’re looking at a meso-scale – a cellular community with a higher level of organization than genes, but a lower scale than organs.

康乃爾大學梅尼格生物醫學工程學院教授,Butcher表示,該項計劃顛覆了,生物學中較為普遍的傳統遺傳方法。相反地,他們正以結構層面高於基因,不過規模低於器官之細胞群落的中尺度進行探究。

 

“The cellular building blocks are very dynamic, and they’re exhibiting important signaling information at that scale that’s not captured in any gene profiling,” he said. And the project is unusual in the equal weight it places on architecture and biology.

他宣稱:「細胞的構材是非常動態的。也就是,它們正以在任何基因分析中,皆未被捕獲那種規模,展示重要的發信號信息。」因此,該項計劃在建築學及生物學方面,寄予同等重視上是不尋常的。

 

Throughout the research, architects, including Sasa Zivkovic, senior personnel and assistant professor in architecture, will analyze and model the biological data, with 3D prints, prototypes of materials and forms based on the biological process of morphogenesis, or the emergence of form, says Jenny Sabin, co-PI and the Arthur L. and Isabel B. Weisenberger Professor in Architecture, and the inaugural chair of the new multicollege Department of Design Tech in the College of Architecture, Art and Planning.

康乃爾大學共同首要調查研究員及Arthur L.Isabel B. Weisenberger建築學教授,兼建築、藝術與規劃學院,新多學院設計技術系的首任系主任,Jenny Sabin表示,在整個該項研究過程中,包括在建築學方面是資深員及助理教授之Sasa Zivkovic在內的建築師們,將使用3D打印、以形態發生(也就是,形態的出現)之生物體變化過程為基礎的材料與形態原型,來分析及製作生物數據模型。

 

“We’re able to bring a spatial way of thinking and a set of technical skills to the data through modeling that isn’t part of the biological science,” Sabin says. “We’re distilling and extracting from the data a rule of life that we could then translate across multiple biological systems and then bring into architecture.”

Sabin宣稱:「透過不屬於生物科學的模型製作,我們能為數據帶來空間的思維方式及一套技術技能。我們正在從數據中,進行精煉及提取一種,之後我們能轉譯跨多個生物體之體系,並引入建築中的生命法則。」

 

The researchers hypothesize all organisms, from plants to animals, create internal structures in the same way: Their cells interact over and over in cycles of iteration as they respond to the mechanical forces in their environment.

此些研究人員假設,從植物到動物的所有生物體,皆以相同方式產生內部結構:當它們對環境中的機械力作出反應時,其細胞會在反覆的循環中,一再相互影響。

 

For example, external mechanical forces include blood pressure and tissue stiffness in chick hearts, and rain and wind on buildings. Internal mechanical forces include the pressure a growing tumor puts on a brain or the pressure of water on the cell wall of a plant due to outside pressures such as drought and soil salinity.

譬如,外部機械力包括,於雛雞心臟中的血壓與組織硬度,及打在建築物上的雨與風。內部機械力包括,生長中之腫瘤對大腦施加的壓力,或由於外部壓力(諸如乾旱及土壤鹽分)造成之水對植物細胞壁的壓力。

 

With each iterative cycle, the cells respond by altering their state, growth, movement, adhesion, and more until they morph into a new form, like a ventricle in a heart or a flower in a plant. That iterative process can inform new ways of designing and fabricating architecture, they believe.

隨著每一反覆循環,細胞藉由改變其狀態、生長、活動、粘附力等作出反應,直到它們形態改變成新形式,比如心臟中的心室或植物中的花朵。他們認為,那種反覆過程能為設計及建構建築物,提供諸多新方法資訊。

 

To test that hypothesis, their first step is to understand the mechanical properties of the cells in the biological systems they’re targeting.

為了驗證那假設,他們的第一步是瞭解,他們正針對之生物體系中的細胞機械屬性。

 

圖片位址:)

https://scitechdaily.com/images/Branching-Morphogenesis.jpg

This piece, Branching Morphogenesis, explores fundamental processes in living systems and their potential application in architecture.

這張(支形態發生)圖探討了,生命系統中的基本過程,及其在建築中的潛在應用。

 

For the plant systems, Roeder is manipulating the flowers of Arabidopsis, also known as thale cress, which is closely related to canola, broccoli and cabbage and which is an established as a model for biological research. Meanwhile, colleagues at Tuskegee University, led by co-PI Marceline Egnin, will explore the plant’s somatic embryos and their ability to regenerate and orchestrate the development of a whole new plant from scratch.

對於植物體系,Roeder正在進行操縱,與芥菜、花椰菜及甘藍菜有密切關聯,且是一種經確認作為生物學研究模型之阿拉伯芥,也被稱為擬南芥花朵。在此同時,於塔斯基吉大學,由共同首要調查研究員(co-PI)Marceline Egnin領導的同僚們,將探索植物之體細胞胚胎及其再生能力,然後從頭開始安排全新植物的發育。

 

Colleagues at the University of Minnesota, led by co-PI David Odde, will tackle the glioblastoma work, while co-PI Butcher leads the chick heart work.

Across all three organ systems, they’ll test how the cells in each system react to the mechanical aspects of their environments, using a microscope invented by Steven Adie, associate professor in the Meinig School.

於明尼蘇達大學,由共同首要調查研究員David Odde領導的同僚們,將著手解決膠質母細胞瘤的研究,而領導該項雛雞心臟研究的是,共同首要調查研究員Butcher。在所有上述三個器官體系中,他們將使用一種,於康乃爾大學梅尼格生物醫學工程學院,由副教授Steven Adie發明的顯微鏡,來驗證於每一體系中的細胞,如何對其環境的機械層面作出反應。

 

The technique – optical coherence elastography – provides a high-resolution 3D “palpation” by mechanically perturbing a sample and precisely imaging the corresponding displacements.

這項光學相干彈性造影的技術,藉由機械性擾動樣本,並精確造影相應的位移,來提供高解析度的3D“觸摸檢視”。

 

The second step is to see whether cells adapt to the mechanical stress by changing gene expression, by assessing which genes turn off and which turn on. They’ll work with Iwijn De Vlaminck, associate professor in the Meinig School, who will use spatial transcriptomics to assess what every cell in a tissue is and what it is trying to do, Butcher says.

第二步是瞭解,細胞是否藉由改變基因表現、評估哪些基因關閉及哪些基因開啟,來適應機械性壓力。Butche表示,他們將與,康乃爾大學梅尼格生物醫學工程學院,將使用空間轉錄體學,來評估於組織中之每一細胞是什麼,及其正試圖做什麼的副教授,Iwijn De Vlaminck進行研究。

 

“We now have essentially a really rich census of the social community,” he says. “So we get to know what each cell does every day and how good they are at it, and how these communities are connected in places that form certain tissues.”

他宣稱:「目前,基本上我們擁有,這種叢生群落,非常豐富的記錄。因此,我們能知曉每一細胞每天做什麼,它們有多擅長,及此些群落如何,於形成特定組織的地方,被連接起來。」

 

Third, they’ll tag each biological system with up to seven fluorescent markers and watch them develop in a process called hyperspectral multiphoton microscopy as the organisms generate shapes in varying environments. Chris Schaffer, a professor at the Meinig School, pioneered the technique and image analysis and will direct the use of the technology. The results will suggest how the growth, division and movement of cells, over cycles of iteration, eventually morph into a robust form.

第三步,當生物體於不同環境中產生形狀時,他們將使用多達七種螢光標記,來記標記每一生物體系,並觀察它們在被稱為高光譜多光子顯微鏡中的發育。康乃爾大學梅尼格生物醫學工程學院的教授,Chris Schaffer開創了該項技術及影像分析,且將指導該技術的使用。此些研究結果,能暗示細胞的成長、分裂及活動,如何在反覆循環中,最終形成一種強健的形態。

 

“We can track a bunch of different biological properties at the same time,” says Roeder, associate professor in Section of Plant Biology in the School of Integrative Plant Science, in the College of Agriculture and Life Sciences and at the Weill Institute for Cell and Molecular Biology. “How do cells grow and respond to mechanical stress? How do they create new shapes? And how is that shape more resistant to the mechanics?”

康奈爾大學農業暨生命科學學院所屬綜合植物科學學院,植物生物學部門,及位於康奈爾大學校園內之合作性非營利研究機構的副教授,Roeder宣稱:「我們能同時追蹤一堆不同生物體的屬性。細胞如何成長及對機械性壓力作出反應?他們如何產生新的形狀?那形狀如何對此機械性部分更具抵抗力?」

 

The team believes mechanical forces – together with gene circuits – encourage a complex tissue to make decisions collectively to create new structures or take a certain shape.

該團隊認為,機械力連同基因迴路(編碼RNA或蛋白質之生物部分的組合,使單一細胞能相互反應及相互作用,以執行某些邏輯功能),助長一個複雜的組織,集體做出決定,來創造新的結構或形成某種形狀。

 

 “We now have what could be a very simple yet elegant way of cells being able to interrogate their environment, and decide ‘we need to speed up growth,’ or ‘we need to stop growing,’” Butcher says. “In that way, you could have different chambers of the heart able to grow a little faster or slower than each other, but overall converge to this robust structure.”

Butcher宣稱:「目前,我們擁有可能是種非常簡單,不過細胞能探詢其環境的簡潔方式,而決定我們需要加速增長我們需要停止增長 以那種方式,你可能擁有,能比彼此稍快或稍慢生長的不同心室。不過,總體上收斂到上述的強健結構物。」

 

The different properties of each target organism – plants, glioblastoma and chick hearts – are each helping the team understand the process of morphogenesis.

每種標的生物體(植物、膠質母細胞瘤及雞心)的不同屬性,正協助該團隊瞭解形態發生的過程。

 

For example, hearts have a surprising amount of variability when they are very young, in the embryonic stages. Some are big, some are small, with different regions growing faster than others, Butcher says. “But 99% of the time, it converges to the same general size, same composition, same functional architecture.”

譬如,於胚胎諸階段中,當心臟非常初期時,具有驚人的變異性數量。Butcher表示,有些是大的,有些是小的,具有諸多不同部分增長速度比其他部分快。「不過,此期間99%,會收斂到相同的一般大小、相同的組成、相同的功能架構。」

 

But glioblastoma is the opposite. It starts in a structure – the brain – that is already fully formed and homogeneous. The cancer breaks that homogeneity, generating variable cells that become more and more variable as the tumor grows unconstrained.

不過,膠質母細胞瘤是相反的。它始於一種,已經完全形成且同質的結構物(大腦)中。此種癌腫打破那種同質性,產生隨著腫瘤不受限制成長,而變得越來越可變的善變細胞。

 

Whereas the embryonic heart starts highly variable and becomes extremely constrained, the glioblastoma starts highly constrained and ends up extremely variable, Butcher says.

Butcher表示,鑒於,胚胎心臟開始高度可變,不過變得極度受抑制。而膠質母細胞瘤開始高度受抑制,不過以極度可變告終。

 

 “And in the middle of that, you have plants that have a continuous cycle of generating variants and utilizing its variations to be able to survive in various conditions and weather patterns. So a plant one day can be engineered to make more leaves or flowers.”

「於是在那之間,人們擁有具一種,產生變異體並利用其異體,能在各種條件及天氣模式中,存活下來之連續循環的植物。因此,有朝一日植物能被工程改造,來使其產生更多的葉子或花朵。」

 

In each organ system, the cellular collectives are interrogating their environmental signals to make decisions on what to morph, Butcher says. “If we could learn these rules, we might be able to twist these levers to achieve a different response by either changing the environment or changing the sensitivity of the cells to that environment.”

Butcher表示,在每一器官體系中,此些細胞集團正在探詢其環境信號,以做出有關變形什麼的決定。「倘若我們能獲此些法則,我們或許能藉由,改變環境或改變細胞對那環境的敏感性,來調整此些途徑,以獲得一種不同的反應。」

 

The architecture team will probably elaborate these rules better than biologists or engineers, Butcher says. “They have a design language that engineers don’t have, that deals with spatial perspective, form and order and function, causality – very much biological terms, but within the built environment. They can do amazing things with an array of those different design principles, that I think is going to unlock a really interesting set of new knowledge.”

Butcher表示,該結構團隊可能會比,生物學家或工程師們,更完善地闡述這些法則。「他們擁有一種,處理空間景觀、形態及秩序與功能、因果關係,非常生物學的術語,不過在此種構築環境中,工程師們沒有的設計用語。他們能用一系列不同的設計原理,做出諸多驚人的事物,我認為那將開啟一組非常有趣的新知識。」

 

Imagine a building with a living, breathing skin that could cool itself in the heat of the day by creating a window on demand, or changing color, or shifting from transparent to opaque to block UV rays. That’s the type of responsivity to the environment that Sabin envisions from the project’s fourth phase.

想像一下,一棟在炎熱的白天裡,藉由需要時,產生一種似窗之物,或改變顏色,或從透明變為不透明,以阻擋紫外線,而能自我降溫之具有一種,活生生、會呼吸之外層的建築物。那是Sabin從該項計劃第四階段之展望,對這種環境的反應類型。

 

“One of the fundamental questions that drives both my core research and also what I do in practice is, how might buildings behave more like organisms, responding to and adapting to their local contexts? And that is very much at root in this project,” Sabin says.

Sabin宣稱:「驅動我的核心研究及我在實踐中所做之,這兩項的基本問題之一是,建築物如何表現得更像生物體,對其當地環境作出響應及適應?也就是說,在此計劃中,那是非常根本的問題。」

 

But what exactly the building façade will do, what it looks like, how it is made and what it is made of will depend on the biological data they collect.

不過,這種建築物外層確切會帶來什麼、它看起來像什麼、如何及由什麼材料建造,將取決於他們收集的生物數據。

 

For example, in Arabidopsis, plant growth partially occurs because of the presence of auxin, a type of growth hormone. Sabin envisions swapping out auxin in the biological systems for, say, façade materials that are responsive to sunlight and that would morph based on the path of the sun in the sky, and using that factor to constrain their designs.

譬如,於擬南芥中,植物成長部分進行,是由於存在植物生長素(一種生長激素)。比如說,Sabin展望,將此生物體系中的生長素,換成對陽光具有反應,且會根據太陽在天空中之路徑,變形的外層材料,並利用那因素來約束他們的設計。

 

“We are definitely not looking at these datasets, which are oftentimes exquisitely beautiful, and then translating that into an architectural form,” Sabin says. “But through deep inquiry, [we’re] looking at the processes and behaviors and applying that thinking to architecture. So it’s much more of a synthesis, as opposed to a direct, formal mimicking.”

Sabin宣稱:「我們絕非在檢視此些,經常是極度漂亮的數據集,之後將那轉譯成一種建築形態。而是透過深入探究,[我們]正在檢視此些變化過程及狀態,並將那種思維應用到建築物上。因此,與一種直接、傳統的模仿對照下,這更像是一種綜合體。」

 

After analyzing and modeling the biological data, they’ll create prototypes and models based on the biological processes the team has detected. They’ll construct the facade on campus in the project’s last phase.

在分析及製作此些生物數據模型之後,根據該團隊已經發現的生物變化過程,他們將創造出原型及模型。他們將在該項計劃的最後階段,於校園內建造這種外層。

 

Sabin believes the project will create “a complete rethinking” of ecological design models and aspects of sustainability, “where we’re not focusing on resource consumption but really thinking about how the building itself can be a living and breathing entity, in a very integrated and reciprocal set of relationships with the local environment,” she says.

Sabin認為,該項計劃將導致,生態設計模型及可持續性層面的“一種徹底反思”。她宣稱:「在此,我們並非著重於資源消耗,而是真正思考建築物本身,在與當地環境的一套非常完整及互惠關係中,如何會是一種活生生、會呼吸的實體。」

 

And the project could offer insights into how other emergent systems work, from stock market crashes to weather patterns and wars, diseases and agricultural problems, Roeder says.

Roeder表示,也就是說,該項計劃可能提供,從股市崩盤到天氣模式與戰爭、疾病及農業問題等,其他緊急體系如何運作的洞察力。

 

“We can understand what the parts are doing. But trying to understand how they give rise to these larger overarching patterns is really difficult,” she says. “If you understand how things work, you can tweak the system. But we’ve got to understand what’s going on first.”

她宣稱:「我們能瞭解此些部分在做什麼。不過,試圖瞭解它們如何導致這些較大之至關重要的模式,確實很困難。如果瞭解事情如何運作,就能調整這種體系。不過,首先我們必須瞭解正在發生什麼。」

 

 

網址:https://scitechdaily.com/shapeshifting-structures-can-buildings-evolve-like-organisms/

翻譯:許東榮

台長: peregrine
人氣(46) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 教育學習(進修、留學、學術研究、教育概況)

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文