24h購物| | PChome| 登入
2008-05-22 18:47:19| 人氣434| 回應0 | 上一篇 | 下一篇

Strength of materials English www.tool-tool.com

推薦 0 收藏 0 轉貼0 訂閱站台

Bewise Inc. www.tool-tool.com Reference source from the internet.

In materials science, the strength of a material refers to the material’s ability to resist an applied force. A material’s strength is a function of engineering processes, and scientists employ a variety of strengthening mechanisms to alter the strength of a material. These mechanisms include work hardening, solid solution strengthening, precipitation hardening and grain boundary strengthening and can be quantified and qualitatively explained. However, strengthening mechanisms are accompanied by the caveat that mechanical properties of the material may degenerate in an attempt to make the material stronger. For example, in grain boundary strengthening, although yield strength is maximized with decreasing grain size, ultimately, very small grain sizes make the material brittle. In general, the yield strength of a material is an adequate indicator of the material’s mechanical strength. Considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending its microstructural properties and the desired end effect. Strength is considered in terms of compressive strength, tensile strength, and shear strength, namely the limit states of compressive stress, tensile stress and shear stress, respectively. The effects of dynamic loading is probably the most important practical part of the strength of materials, especially the problem of fatigue. Repeated loading often initiates brittle cracks, which grow slowly until failure occurs.

However, the term strength of materials most often refers to various methods of calculating stresses in structural members, such as beams, columns and shafts, when the equations of equilibrium are not sufficient to solve the problem. In such problems, known as statically indeterminate problems, the elastic or plastic resistance of the material to deformation must be considered when calculating stresses. In this sense, the word ``strength" could well be replaced by ``stiffness", but the usage goes back to at least 1930 and is not likely to go away any time soon.

[edit] Definitions

[edit] Stress terms
A material being loaded in a) compression, b) tension, c) shear.

A material being loaded in a) compression, b) tension, c) shear.

Uniaxial stress is expressed by

sigma=frac{F}{A},

where F is the force (N) acting on an area A (m^2). The area can be the undeformed area or the deformed area, depending on whether engineering stress or true stress is used.

* Compressive stress (or compression) is the stress state when the material (compression member) tends to compact. A simple case of compression is the uniaxial compression induced by the action of opposite, pushing forces. Compressive strength for materials is generally higher than that of tensile stress, but geometry is very important in the analysis, as compressive stress can lead to buckling.

* Tensile stress is a loading that tends to produce stretching of a material by the application of axially directed pulling forces. Any material which falls into the "elastic" category can generally tolerate mild tensile stresses while materials such as ceramics and brittle alloys are very succeptable to failure under the same conditions. If a material is stressed beyond its limits, it will fail. The failure mode, either ductile or brittle, is based mostly on the microstructure of the material. Some Steel alloys are examples of materials with high tensile strength.

* Shear stress is caused when a force is applied to produce a sliding failure of a material along a plane that is parallel to the direction of the applied force. An example is cutting paper with scissors.

[edit] Strength terms

* Yield strength is the lowest stress that gives permanent deformation in a material. In some materials, like aluminium alloys, the point of yielding is hard to define, thus it is usually given as the stress required to cause 0.2% plastic strain.

* Compressive strength is a limit state of compressive stress that leads to compressive failure in the manner of ductile failure (infinite theoretical yield) or in the manner of brittle failure (rupture as the result of crack propagation, or sliding along a weak plane - see shear strength).

* Tensile strength or ultimate tensile strength is a limit state of tensile stress that leads to tensile failure in the manner of ductile failure (yield as the first stage of failure, some hardening in the second stage and break after a possible "neck" formation) or in the manner of brittle failure (sudden breaking in two or more pieces with a low stress state). Tensile strength can be given as either true stress or engineering stress.

* Fatigue strength is a measure of the strength of a material or a component under cyclic loading, and is usually more difficult to assess than the static strength measures. Fatigue strength is given as stress amplitude or stress range (Δσ = σmax − σmin), usually at zero mean stress, along with the number of cycles to failure.

* Impact strength, it is the capability of the material in withstanding by the suddenly applied loads in terms of energy. Often measured with the Izod impact strength test or Charpy impact test, both of which measure the impact energy required to fracture a sample.

Please help improve this section by expanding it.
Further information might be found on the talk page or at requests for expansion.


[edit] Strain (deformation) terms

* Deformation of the material is the change in geometry when stress is applied (in the form of force loading, gravitational field, acceleration, thermal expansion, etc.). Deformation is expressed by the displacement field of the material.

* Strain or reduced deformation is a mathematical term to express the trend of the deformation change among the material field. For uniaxial loading - displacements of a specimen (for example a bar element) it is expressed as the quotient of the displacement and the length of the specimen. For 3D displacement fields it is expressed as derivatives of displacement functions in terms of a second order tensor (with 6 independent elements).

* Deflection is a term to describe the magnitude to which a structural element bends under a load.

[edit] Stress-strain relations

* Elasticity is the ability of a material to return to its previous shape after stress is released. In many materials, the relation between applied stress and the resulting strain is directly proportional (up to a certain limit), and a graph representing those two quantities is a straight line.

The slope of this line is known as Young’s Modulus, or the "Modulus of Elasticity." The Modulus of Elasticity can be used to determine stress-strain relationships in the linear-elastic portion of the stress-strain curve. The linear-elastic region is taken to be between 0 and 0.2% strain, and is defined as the region of strain in which no yielding (permanent deformation) occurs.

* Plasticity or plastic deformation is the opposite of elastic deformation and is accepted as unrecoverable strain. Plastic deformation is retained even after the relaxation of the applied stress. Most materials in the linear-elastic category are usually capable of plastic deformation. Brittle materials, like ceramics, do not experience any plastic deformation and will fracture under relatively low stress. Materials such as metals usually experience a small amount of plastic deformation before failure while soft or ductile polymers will plasticly deform much more.

Consider the difference between a fresh carrot and chewed bubble gum. The carrot will stretch very little before breaking, but nevertheless will still stretch. The chewed bubble gum, on the other hand, will plasticly deform enormously before finally breaking.

[edit] Design terms

Ultimate strength is an attribute directly related to a material, rather than just specific specimen of the material, and as such is quoted force per unit of cross section area (N/m²). For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MN/m². In general, the SI unit of stress is the pascal, where 1 Pa = 1 N/m². In Imperial units, the unit of stress is given as lbf/in² or pounds-force per square inch. This unit is often abbreviated as psi. One thousand psi is abbreviated ksi.

Factor of safety is a design constraint that an engineered component or structure must achieve. FS = UTS / R, where FS: the Factor of Safety, R: The applied stress, and UTS: the Ultimate force (or stress).

Margin of Safety is also sometimes used to as design constraint. It is defined MS=Factor of safety - 1

For example to achieve a factor of safety of 4, the allowable stress in an AISI 1018 steel component can be worked out as R = UTS / FS = 440/4 = 110 MPa, or R = 110×106 N/m².

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、BW捨棄式鑽石V卡刀’BW捨棄式金屬圓鋸片、木工捨棄式金屬圓鋸片、PCD木工圓鋸片、醫療配件刀具設計、汽車業刀具設計、電子產業鑽石刀具、全鎢鋼V卡刀-電路版專用’全鎢鋼鋸片、焊刃式側銑刀、焊刃式千鳥側銑刀、焊刃式T型銑刀、焊刃式千鳥T型銑刀、焊刃式螺旋機械鉸刀、全鎢鋼斜邊刀電路版專用、鎢鋼焊刃式高速鉸刀、超微粒鎢鋼機械鉸刀、超微粒鎢鋼定點鑽、焊刃式帶柄角度銑刀、焊刃式螺旋立銑刀、焊刃式帶柄倒角銑刀、焊刃式角度銑刀、焊刃式筒型平面銑刀、木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Milling cutter、CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’Edge modifying knife’Solid carbide saw blade-V type’V-type locking-special use for PC board’Metal Slitting Sawa’Carbide Side milling Cutters’Carbide Side Milling Cutters With Staggered Teeth’Carbide T-Slot Milling Cutters’Carbide T-Slot Milling Cutters With Staggered Teeth’Carbide Machine Reamers’High speed reamer-standard type’High speed reamer-long type’’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘V-type locking-special use for PC board ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

台長: BW-chen willy
人氣(434) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 財經企管(投資、理財、保險、經濟、企管、人資) | 個人分類: 科學研究新知 |
此分類下一篇:切削加工和刀具技術的現狀與發展www.tool-tool.com
此分類上一篇:Honda English www.tool-tool.com

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文